Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

OHM: GPU Based Occupancy Map Generation (2206.06079v1)

Published 26 Apr 2022 in cs.CV and cs.RO

Abstract: Occupancy grid maps (OGMs) are fundamental to most systems for autonomous robotic navigation. However, CPU-based implementations struggle to keep up with data rates from modern 3D lidar sensors, and provide little capacity for modern extensions which maintain richer voxel representations. This paper presents OHM, our open source, GPU-based OGM framework. We show how the algorithms can be mapped to GPU resources, resolving difficulties with contention to obtain a successful implementation. The implementation supports many modern OGM algorithms including NDT-OM, NDT-TM, decay-rate and TSDF. A thorough performance evaluation is presented based on tracked and quadruped UGV platforms and UAVs, and data sets from both outdoor and subterranean environments. The results demonstrate excellent performance improvements both offline, and for online processing in embedded platforms. Finally, we describe how OHM was a key enabler for the UGV navigation solution for our entry in the DARPA Subterranean Challenge, which placed second at the Final Event.

Citations (15)

Summary

We haven't generated a summary for this paper yet.