Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal Inference-Based Root Cause Analysis for Online Service Systems with Intervention Recognition (2206.05871v1)

Published 13 Jun 2022 in cs.SE and cs.AI

Abstract: Fault diagnosis is critical in many domains, as faults may lead to safety threats or economic losses. In the field of online service systems, operators rely on enormous monitoring data to detect and mitigate failures. Quickly recognizing a small set of root cause indicators for the underlying fault can save much time for failure mitigation. In this paper, we formulate the root cause analysis problem as a new causal inference task named intervention recognition. We proposed a novel unsupervised causal inference-based method named Causal Inference-based Root Cause Analysis (CIRCA). The core idea is a sufficient condition for a monitoring variable to be a root cause indicator, i.e., the change of probability distribution conditioned on the parents in the Causal Bayesian Network (CBN). Towards the application in online service systems, CIRCA constructs a graph among monitoring metrics based on the knowledge of system architecture and a set of causal assumptions. The simulation study illustrates the theoretical reliability of CIRCA. The performance on a real-world dataset further shows that CIRCA can improve the recall of the top-1 recommendation by 25% over the best baseline method.

Citations (50)

Summary

We haven't generated a summary for this paper yet.