Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FisheyeEX: Polar Outpainting for Extending the FoV of Fisheye Lens (2206.05844v1)

Published 12 Jun 2022 in cs.CV and eess.IV

Abstract: Fisheye lens gains increasing applications in computational photography and assisted driving because of its wide field of view (FoV). However, the fisheye image generally contains invalid black regions induced by its imaging model. In this paper, we present a FisheyeEX method that extends the FoV of the fisheye lens by outpainting the invalid regions, improving the integrity of captured scenes. Compared with the rectangle and undistorted image, there are two challenges for fisheye image outpainting: irregular painting regions and distortion synthesis. Observing the radial symmetry of the fisheye image, we first propose a polar outpainting strategy to extrapolate the coherent semantics from the center to the outside region. Such an outpainting manner considers the distribution pattern of radial distortion and the circle boundary, boosting a more reasonable completion direction. For the distortion synthesis, we propose a spiral distortion-aware perception module, in which the learning path keeps consistent with the distortion prior of the fisheye image. Subsequently, a scene revision module rearranges the generated pixels with the estimated distortion to match the fisheye image, thus extending the FoV. In the experiment, we evaluate the proposed FisheyeEX on three popular outdoor datasets: Cityscapes, BDD100k, and KITTI, and one real-world fisheye image dataset. The results demonstrate that our approach significantly outperforms the state-of-the-art methods, gaining around 27% more content beyond the original fisheye image.

Citations (3)

Summary

We haven't generated a summary for this paper yet.