Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mathematical Theory of Bayesian Statistics for Unknown Information Source (2206.05630v5)

Published 11 Jun 2022 in cs.LG, math.ST, and stat.TH

Abstract: In statistical inference, uncertainty is unknown and all models are wrong. That is to say, a person who makes a statistical model and a prior distribution is simultaneously aware that both are fictional candidates. To study such cases, statistical measures have been constructed, such as cross validation, information criteria, and marginal likelihood, however, their mathematical properties have not yet been completely clarified when statistical models are under- and over- parametrized. We introduce a place of mathematical theory of Bayesian statistics for unknown uncertainty, which clarifies general properties of cross validation, information criteria, and marginal likelihood, even if an unknown data-generating process is unrealizable by a model or even if the posterior distribution cannot be approximated by any normal distribution. Hence it gives a helpful standpoint for a person who cannot believe in any specific model and prior. This paper consists of three parts. The first is a new result, whereas the second and third are well-known previous results with new experiments. We show there exists a more precise estimator of the generalization loss than leave-one-out cross validation, there exists a more accurate approximation of marginal likelihood than BIC, and the optimal hyperparameters for generalization loss and marginal likelihood are different.

Citations (7)

Summary

We haven't generated a summary for this paper yet.