Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rewindable Quantum Computation and Its Equivalence to Cloning and Adaptive Postselection (2206.05434v3)

Published 11 Jun 2022 in quant-ph and cs.CC

Abstract: We define rewinding operators that invert quantum measurements. Then, we define complexity classes ${\sf RwBQP}$, ${\sf CBQP}$, and ${\sf AdPostBQP}$ as sets of decision problems solvable by polynomial-size quantum circuits with a polynomial number of rewinding operators, cloning operators, and adaptive postselections, respectively. Our main result is that ${\sf BPP}{\sf PP}\subseteq{\sf RwBQP}={\sf CBQP}={\sf AdPostBQP}\subseteq{\sf PSPACE}$. As a byproduct of this result, we show that any problem in ${\sf PostBQP}$ can be solved with only postselections of outputs whose probabilities are polynomially close to one. Under the strongly believed assumption that ${\sf BQP}\nsupseteq{\sf SZK}$, or the shortest independent vectors problem cannot be efficiently solved with quantum computers, we also show that a single rewinding operator is sufficient to achieve tasks that are intractable for quantum computation. In addition, we consider rewindable Clifford and instantaneous quantum polynomial time circuits.

Citations (3)

Summary

We haven't generated a summary for this paper yet.