Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Preconditioned infinite GMRES for parameterized linear systems (2206.05153v1)

Published 10 Jun 2022 in math.NA and cs.NA

Abstract: We are interested in obtaining approximate solutions to parameterized linear systems of the form $A(\mu) x(\mu) = b$ for many values of the parameter $\mu$. Here $A(\mu)$ is large, sparse, and nonsingular, with a nonlinear analytic dependence on $\mu$. Our approach is based on a companion linearization for parameterized linear systems. The companion matrix is similar to the operator in the infinite Arnoldi method, and we use this to adapt the flexible GMRES setting. In this way, our method returns a function $\tilde{x}(\mu)$ which is cheap to evaluate for different $\mu$, and the preconditioner is applied only approximately. This novel approach leads to increased freedom to carry out the action of the operation inexactly, which provides performance improvement over the method infinite GMRES, without a loss of accuracy in general. We show that the error of our method is estimated based on the magnitude of the parameter $\mu$, the inexactness of the preconditioning, and the spectrum of the linear companion matrix. Numerical examples from a finite element discretization of a Helmholtz equation with a parameterized material coefficient illustrate the competitiveness of our approach. The simulations are reproducible and publicly available online.

Citations (3)

Summary

We haven't generated a summary for this paper yet.