Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Quantum Circuit Design with a Standard Cell Approach, with an Application to Neutral Atom Quantum Computers (2206.04990v3)

Published 10 Jun 2022 in quant-ph and cs.ET

Abstract: We design quantum circuits by using the standard cell approach borrowed from classical circuit design, which can speed-up the layout of circuits with a regular structure. Our standard cells are general and can be used for all types of quantum circuits: error-corrected or not. The standard cell approach enables the formulation of layout-aware routing algorithms. Our method is directly applicable to neutral atom quantum computers supporting qubit shuttling. Such computers enable zoned architectures for memory, processing and measurement, and we design circuits using qubit storages (memory and measurement zones) and standard cells (processing zones). Herein, we use cubic standard cells for Toffoli gates and, starting from a 3D architecture, we design a multiplication circuit. We present evidence that, when compared with automatic routing methods, our layout-aware routers are significantly faster and achieve shallower 3D circuits (by at least 2.5x) and with a lower routing cost. Additionally, our co-design approach can be used to estimate the resources necessary for a quantum computation without using complex compilation methods. We conclude that standard cells, with the support of layout-aware routing, pave the way to very large scale methods for quantum circuit compilation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G.-O. Reymond, and C. Jurczak, “Quantum computing with neutral atoms,” arXiv preprint arXiv:2006.12326, 2020.
  2. G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for nisq-era quantum devices,” in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, 2019, pp. 1001–1014.
  3. C. Zhang, A. B. Hayes, L. Qiu, Y. Jin, Y. Chen, and E. Z. Zhang, “Time-optimal qubit mapping,” in Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, 2021, pp. 360–374.
  4. A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for mapping quantum circuits to the ibm qx architectures,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 7, pp. 1226–1236, 2018.
  5. J. Grad and J. E. Stine, “A standard cell library for student projects,” in Proceedings 2003 IEEE International Conference on Microelectronic Systems Education. MSE’03.   IEEE, 2003, pp. 98–99.
  6. A. E. Dunlop, B. W. Kernighan et al., “A procedure for placement of standard cell vlsi circuits,” IEEE Transactions on Computer-Aided Design, vol. 4, no. 1, pp. 92–98, 1985.
  7. X. Yang, M. Sarrafzadeh et al., “Dragon2000: Standard-cell placement tool for large industry circuits,” in IEEE/ACM International Conference on Computer Aided Design. ICCAD-2000. IEEE/ACM Digest of Technical Papers (Cat. No. 00CH37140).   IEEE, 2000, pp. 260–263.
  8. S. Lie, “Cerebras architecture deep dive: First look inside the hw/sw co-design for deep learning: Cerebras systems,” in 2022 IEEE Hot Chips 34 Symposium (HCS).   IEEE Computer Society, 2022, pp. 1–34.
  9. D. Maslov, S. M. Falconer, and M. Mosca, “Quantum circuit placement,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 4, pp. 752–763, 2008.
  10. M. Whitney, N. Isailovic, Y. Patel, and J. Kubiatowicz, “Automated generation of layout and control for quantum circuits,” in Proceedings of the 4th international conference on Computing frontiers, 2007, pp. 83–94.
  11. M. Y. Siraichi, V. F. d. Santos, S. Collange, and F. M. Q. Pereira, “Qubit allocation,” in Proceedings of the 2018 International Symposium on Code Generation and Optimization, ser. CGO 2018.   New York, NY, USA: Association for Computing Machinery, 2018, p. 113–125. [Online]. Available: https://doi.org/10.1145/3168822
  12. B. Dury and O. Di Matteo, “A qubo formulation for qubit allocation,” arXiv preprint arXiv:2009.00140, 2020.
  13. T. Serdar and C. Sechen, “Automatic datapath tile placement and routing,” in Proceedings Design, Automation and Test in Europe. Conference and Exhibition 2001.   IEEE, 2001, pp. 552–559.
  14. M. Suchara, J. Kubiatowicz, A. Faruque, F. T. Chong, C.-Y. Lai, and G. Paz, “Qure: The quantum resource estimator toolbox,” in 2013 IEEE 31st International Conference on Computer Design (ICCD).   IEEE, 2013, pp. 419–426.
  15. L. Lao, B. van Wee, I. Ashraf, J. van Someren, N. Khammassi, K. Bertels, and C. G. Almudever, “Mapping of lattice surgery-based quantum circuits on surface code architectures,” Quantum Science and Technology, vol. 4, no. 1, p. 015005, 2018.
  16. M. Ahsan and J. Kim, “Optimization of quantum computer architecture using a resource-performance simulator,” in 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE).   IEEE, 2015, pp. 1108–1113.
  17. M. Ahsan, R. V. Meter, and J. Kim, “Designing a million-qubit quantum computer using a resource performance simulator,” ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 12, no. 4, pp. 1–25, 2015.
  18. G. G. Guerreschi and J. Park, “Two-step approach to scheduling quantum circuits,” Quantum Science and Technology, vol. 3, no. 4, p. 045003, 2018.
  19. D. A. Reis, C. A. T. Campos, T. R. B. Soares, O. P. V. Neto, and F. S. Torres, “A methodology for standard cell design for qca,” in 2016 IEEE International Symposium on Circuits and Systems (ISCAS).   IEEE, 2016, pp. 2114–2117.
  20. M. Walter, R. Wille, D. Große, F. S. Torres, and R. Drechsler, “Placement and routing for tile-based field-coupled nanocomputing circuits is np-complete (research note),” ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 15, no. 3, pp. 1–10, 2019.
  21. C. Jones, “Low-overhead constructions for the fault-tolerant toffoli gate,” Physical Review A, vol. 87, no. 2, p. 022328, 2013.
  22. C. Gidney, “Halving the cost of quantum addition,” Quantum, vol. 2, p. 74, 2018.
  23. E. Muñoz-Coreas and H. Thapliyal, “Quantum circuit design of a t-count optimized integer multiplier,” IEEE Transactions on Computers, vol. 68, no. 5, pp. 729–739, 2018.
  24. E. E. Dobbs, R. Basmadjian, A. Paler, and J. S. Friedman, “Fast swapping in a quantum multiplier modelled as a queuing network,” in International Conference on Reversible Computation.   Springer, 2021, pp. 256–265.
  25. A. Paler and R. Basmadjian, “Energy cost of quantum circuit optimisation: Predicting that optimising shor’s algorithm circuit uses 1 gwh,” ACM Transactions on Quantum Computing, vol. 3, no. 1, pp. 1–14, 2022.
  26. R. Chao and B. W. Reichardt, “Quantum error correction with only two extra qubits,” Physical review letters, vol. 121, no. 5, p. 050502, 2018.
  27. C. Gidney and M. Ekerå, “How to factor 2048 bit rsa integers in 8 hours using 20 million noisy qubits,” Quantum, vol. 5, p. 433, 2021.
  28. P. Selinger, “Quantum circuits of t-depth one,” Physical Review A, vol. 87, no. 4, p. 042302, 2013.
Citations (2)

Summary

We haven't generated a summary for this paper yet.