Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PatchComplete: Learning Multi-Resolution Patch Priors for 3D Shape Completion on Unseen Categories (2206.04916v2)

Published 10 Jun 2022 in cs.CV

Abstract: While 3D shape representations enable powerful reasoning in many visual and perception applications, learning 3D shape priors tends to be constrained to the specific categories trained on, leading to an inefficient learning process, particularly for general applications with unseen categories. Thus, we propose PatchComplete, which learns effective shape priors based on multi-resolution local patches, which are often more general than full shapes (e.g., chairs and tables often both share legs) and thus enable geometric reasoning about unseen class categories. To learn these shared substructures, we learn multi-resolution patch priors across all train categories, which are then associated to input partial shape observations by attention across the patch priors, and finally decoded into a complete shape reconstruction. Such patch-based priors avoid overfitting to specific train categories and enable reconstruction on entirely unseen categories at test time. We demonstrate the effectiveness of our approach on synthetic ShapeNet data as well as challenging real-scanned objects from ScanNet, which include noise and clutter, improving over state of the art in novel-category shape completion by 19.3% in chamfer distance on ShapeNet, and 9.0% for ScanNet.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yuchen Rao (4 papers)
  2. Yinyu Nie (21 papers)
  3. Angela Dai (84 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com