Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probability flow solution of the Fokker-Planck equation (2206.04642v3)

Published 9 Jun 2022 in cs.LG, cond-mat.dis-nn, cond-mat.stat-mech, cs.NA, math.NA, and math.PR

Abstract: The method of choice for integrating the time-dependent Fokker-Planck equation in high-dimension is to generate samples from the solution via integration of the associated stochastic differential equation. Here, we study an alternative scheme based on integrating an ordinary differential equation that describes the flow of probability. Acting as a transport map, this equation deterministically pushes samples from the initial density onto samples from the solution at any later time. Unlike integration of the stochastic dynamics, the method has the advantage of giving direct access to quantities that are challenging to estimate from trajectories alone, such as the probability current, the density itself, and its entropy. The probability flow equation depends on the gradient of the logarithm of the solution (its "score"), and so is a-priori unknown. To resolve this dependence, we model the score with a deep neural network that is learned on-the-fly by propagating a set of samples according to the instantaneous probability current. We show theoretically that the proposed approach controls the KL divergence from the learned solution to the target, while learning on external samples from the stochastic differential equation does not control either direction of the KL divergence. Empirically, we consider several high-dimensional Fokker-Planck equations from the physics of interacting particle systems. We find that the method accurately matches analytical solutions when they are available as well as moments computed via Monte-Carlo when they are not. Moreover, the method offers compelling predictions for the global entropy production rate that out-perform those obtained from learning on stochastic trajectories, and can effectively capture non-equilibrium steady-state probability currents over long time intervals.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com