Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A computational framework for weighted simplicial homology (2206.04612v1)

Published 9 Jun 2022 in math.AT, cs.SC, math.CO, math.GN, and math.KT

Abstract: We provide a bottom up construction of torsion generators for weighted homology of a weighted complex over a discrete valuation ring $R=\mathbb{F}[[\pi]]$. This is achieved by starting from a basis for classical homology of the $n$-th skeleton for the underlying complex with coefficients in the residue field $\mathbb{F}$ and then lifting it to a basis for the weighted homology with coefficients in the ring $R$. Using the latter, a bijection is established between $n+1$ and $n$ dimensional simplices whose weight ratios provide the exponents of the $\pi$-monomials that generate each torsion summand in the structure theorem of the weighted homology modules over $R$. We present algorithms that subsume the torsion computation by reducing it to normalization over the residue field of $R$, and describe a Python package we implemented that takes advantage of this reduction and performs the computation efficiently.

Citations (2)

Summary

We haven't generated a summary for this paper yet.