Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal SQ Lower Bounds for Robustly Learning Discrete Product Distributions and Ising Models (2206.04589v1)

Published 9 Jun 2022 in cs.DS, cs.LG, math.ST, stat.ML, and stat.TH

Abstract: We establish optimal Statistical Query (SQ) lower bounds for robustly learning certain families of discrete high-dimensional distributions. In particular, we show that no efficient SQ algorithm with access to an $\epsilon$-corrupted binary product distribution can learn its mean within $\ell_2$-error $o(\epsilon \sqrt{\log(1/\epsilon)})$. Similarly, we show that no efficient SQ algorithm with access to an $\epsilon$-corrupted ferromagnetic high-temperature Ising model can learn the model to total variation distance $o(\epsilon \log(1/\epsilon))$. Our SQ lower bounds match the error guarantees of known algorithms for these problems, providing evidence that current upper bounds for these tasks are best possible. At the technical level, we develop a generic SQ lower bound for discrete high-dimensional distributions starting from low dimensional moment matching constructions that we believe will find other applications. Additionally, we introduce new ideas to analyze these moment-matching constructions for discrete univariate distributions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.