Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Receding Horizon Inverse Reinforcement Learning (2206.04477v2)

Published 9 Jun 2022 in cs.LG and cs.AI

Abstract: Inverse reinforcement learning (IRL) seeks to infer a cost function that explains the underlying goals and preferences of expert demonstrations. This paper presents receding horizon inverse reinforcement learning (RHIRL), a new IRL algorithm for high-dimensional, noisy, continuous systems with black-box dynamic models. RHIRL addresses two key challenges of IRL: scalability and robustness. To handle high-dimensional continuous systems, RHIRL matches the induced optimal trajectories with expert demonstrations locally in a receding horizon manner and 'stitches' together the local solutions to learn the cost; it thereby avoids the 'curse of dimensionality'. This contrasts sharply with earlier algorithms that match with expert demonstrations globally over the entire high-dimensional state space. To be robust against imperfect expert demonstrations and control noise, RHIRL learns a state-dependent cost function 'disentangled' from system dynamics under mild conditions. Experiments on benchmark tasks show that RHIRL outperforms several leading IRL algorithms in most instances. We also prove that the cumulative error of RHIRL grows linearly with the task duration.

Citations (13)

Summary

We haven't generated a summary for this paper yet.