Papers
Topics
Authors
Recent
2000 character limit reached

From Dimension-Free Manifolds to Dimension-varying Control Systems

Published 9 Jun 2022 in eess.SY, cs.SY, and math.OC | (2206.04461v3)

Abstract: Starting from the vector multipliers, the inner product, norm, distance, as well as addition of two vectors of different dimensions are proposed, which makes the spaces into a topological vector space, called the Euclidean space of different dimension (ESDD). An equivalence is obtained via distance. As a quotient space of ESDDs w.r.t. equivalence, the dimension-free Euclidean spaces (DFESs) and dimension-free manifolds (DFMs) are obtained, which have bundled vector spaces as its tangent space at each point. Using the natural projection from a ESDD to a DFES, a fiber bundle structure is obtained, which has ESDD as its total space and DFES as its base space. Classical objects in differential geometry, such as smooth functions, (co-)vector fields, tensor fields, etc., have been extended to the case of DFMs with the help of projections among different dimensional Euclidean spaces. Then the dimension-varying dynamic systems (DVDSs) and dimension-varying control systems (DVCSs) are presented, which have DFM as their state space. The realization, which is a lifting of DVDSs or DVCSs from DFMs into ESDDs, and the projection of DVDSs or DVCSs from ESDDs onto DFMs are investigated.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.