Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monotonicity for Multiobjective Accelerated Proximal Gradient Methods (2206.04412v2)

Published 9 Jun 2022 in math.OC

Abstract: Accelerated proximal gradient methods, which are also called fast iterative shrinkage-thresholding algorithms (FISTA) are known to be efficient for many applications. Recently, Tanabe et al. proposed an extension of FISTA for multiobjective optimization problems. However, similarly to the single-objective minimization case, the objective functions values may increase in some iterations, and inexact computations of subproblems can also lead to divergence. Motivated by this, here we propose a variant of the FISTA for multiobjective optimization, that imposes some monotonicity of the objective functions values. In the single-objective case, we retrieve the so-called MFISTA, proposed by Beck and Teboulle. We also prove that our method has global convergence with rate $O(1/k2)$, where $k$ is the number of iterations, and show some numerical advantages in requiring monotonicity.

Summary

We haven't generated a summary for this paper yet.