Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Non-Vacuous Generalization Bounds from Optimization (2206.04359v2)

Published 9 Jun 2022 in cs.LG and cs.AI

Abstract: One of the fundamental challenges in the deep learning community is to theoretically understand how well a deep neural network generalizes to unseen data. However, current approaches often yield generalization bounds that are either too loose to be informative of the true generalization error or only valid to the compressed nets. In this study, we present a simple yet non-vacuous generalization bound from the optimization perspective. We achieve this goal by leveraging that the hypothesis set accessed by stochastic gradient algorithms is essentially fractal-like and thus can derive a tighter bound over the algorithm-dependent Rademacher complexity. The main argument rests on modeling the discrete-time recursion process via a continuous-time stochastic differential equation driven by fractional Brownian motion. Numerical studies demonstrate that our approach is able to yield plausible generalization guarantees for modern neural networks such as ResNet and Vision Transformer, even when they are trained on a large-scale dataset (e.g. ImageNet-1K).

Citations (1)

Summary

We haven't generated a summary for this paper yet.