Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating Aleatoric Uncertainty via Conditional Generative Models (2206.04287v1)

Published 9 Jun 2022 in cs.LG and stat.ML

Abstract: Aleatoric uncertainty quantification seeks for distributional knowledge of random responses, which is important for reliability analysis and robustness improvement in machine learning applications. Previous research on aleatoric uncertainty estimation mainly targets closed-formed conditional densities or variances, which requires strong restrictions on the data distribution or dimensionality. To overcome these restrictions, we study conditional generative models for aleatoric uncertainty estimation. We introduce two metrics to measure the discrepancy between two conditional distributions that suit these models. Both metrics can be easily and unbiasedly computed via Monte Carlo simulation of the conditional generative models, thus facilitating their evaluation and training. We demonstrate numerically how our metrics provide correct measurements of conditional distributional discrepancies and can be used to train conditional models competitive against existing benchmarks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.