Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-order approximation to generalized Caputo derivatives and generalized fractional advection-diffusion equations (2206.04033v4)

Published 8 Jun 2022 in math.NA and cs.NA

Abstract: In this article, a high-order time-stepping scheme based on the cubic interpolation formula is considered to approximate the generalized Caputo fractional derivative (GCFD). Convergence order for this scheme is $(4-\alpha)$, where $\alpha ~(0<\alpha<1)$ is the order of the GCFD. The local truncation error is also provided. Then, we adopt the developed scheme to establish a difference scheme for the solution of generalized fractional advection-diffusion equation with Dirichlet boundary conditions. Furthermore, we discuss about the stability and convergence of the difference scheme. Numerical examples are presented to examine the theoretical claims. The convergence order of the difference scheme is analyzed numerically, which is $(4-\alpha)$ in time and second-order in space.

Citations (2)

Summary

We haven't generated a summary for this paper yet.