Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structural identifiability of compartmental models for infectious disease transmission is influenced by data type (2206.03959v1)

Published 8 Jun 2022 in q-bio.QM

Abstract: If model identifiability is not confirmed, inferences from infectious disease transmission models may not be reliable, so they might lead to misleading recommendations. Structural identifiability analysis characterizes whether it is possible to obtain unique solutions for all unknown model parameters, given the model structure. In this work, we studied the structural identifiability of some typical deterministic compartmental models for infectious disease transmission, focusing on the influence of the data type considered as model output on the identifiability of unknown model parameters, including initial conditions. We defined 26 model versions, each having a unique combination of underlying compartmental structure and data type(s) considered as model output(s). Four compartmental model structures and three common data types in disease surveillance (incidence, prevalence and detected vector counts) were studied. The structural identifiability of some parameters varied depending on the type of model output. In general, models with multiple data types as outputs had more structurally identifiable parameters, than did models with a single data type as output. This study highlights the importance of a careful consideration of data types as an integral part of the inference process with compartmental infectious disease transmission models.

Summary

We haven't generated a summary for this paper yet.