Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Linear Convergence Rate of Generalized ADMM for Convex Composite Programming (2206.03649v1)

Published 8 Jun 2022 in math.OC

Abstract: Over the fast few years, the numerical success of the generalized alternating direction method of multipliers (GADMM) proposed by Eckstein & Bertsekas [Math. Prog., 1992] has inspired intensive attention in analyzing its theoretical convergence properties. In this paper, we devote to establishing the linear convergence rate of the semi-proximal GADMM (sPGADMM) for solving linearly constrained convex composite optimization problems. The semi-proximal terms contained in each subproblem possess the abilities of handling with multi-block problems efficiently. We initially present some important inequalities for the sequence generated by the sPGADMM, and then establish the local linear convergence rate under the assumption of calmness. As a by-product, the global convergence property is also discussed.

Summary

We haven't generated a summary for this paper yet.