Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Code-DKT: A Code-based Knowledge Tracing Model for Programming Tasks (2206.03545v1)

Published 7 Jun 2022 in cs.SE, cs.AI, and cs.CY

Abstract: Knowledge tracing (KT) models are a popular approach for predicting students' future performance at practice problems using their prior attempts. Though many innovations have been made in KT, most models including the state-of-the-art Deep KT (DKT) mainly leverage each student's response either as correct or incorrect, ignoring its content. In this work, we propose Code-based Deep Knowledge Tracing (Code-DKT), a model that uses an attention mechanism to automatically extract and select domain-specific code features to extend DKT. We compared the effectiveness of Code-DKT against Bayesian and Deep Knowledge Tracing (BKT and DKT) on a dataset from a class of 50 students attempting to solve 5 introductory programming assignments. Our results show that Code-DKT consistently outperforms DKT by 3.07-4.00% AUC across the 5 assignments, a comparable improvement to other state-of-the-art domain-general KT models over DKT. Finally, we analyze problem-specific performance through a set of case studies for one assignment to demonstrate when and how code features improve Code-DKT's predictions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yang Shi (107 papers)
  2. Min Chi (30 papers)
  3. Tiffany Barnes (27 papers)
  4. Thomas Price (5 papers)
Citations (18)