Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Introspective Experience Replay: Look Back When Surprised (2206.03171v4)

Published 7 Jun 2022 in cs.LG

Abstract: In reinforcement learning (RL), experience replay-based sampling techniques play a crucial role in promoting convergence by eliminating spurious correlations. However, widely used methods such as uniform experience replay (UER) and prioritized experience replay (PER) have been shown to have sub-optimal convergence and high seed sensitivity respectively. To address these issues, we propose a novel approach called IntrospectiveExperience Replay (IER) that selectively samples batches of data points prior to surprising events. Our method builds upon the theoretically sound reverse experience replay (RER) technique, which has been shown to reduce bias in the output of Q-learning-type algorithms with linear function approximation. However, this approach is not always practical or reliable when using neural function approximation. Through empirical evaluations, we demonstrate that IER with neural function approximation yields reliable and superior performance compared toUER, PER, and hindsight experience replay (HER) across most tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.