Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved single-shot decoding of higher dimensional hypergraph product codes (2206.03122v2)

Published 7 Jun 2022 in quant-ph

Abstract: In this work we study the single-shot performance of higher dimensional hypergraph product codes decoded using belief-propagation and ordered-statistics decoding [Panteleev and Kalachev, 2021]. We find that decoding data qubit and syndrome measurement errors together in a single stage leads to single-shot thresholds that greatly exceed all previously observed single-shot thresholds for these codes. For the 3D toric code and a phenomenological noise model, our results are consistent with a sustainable threshold of 7.1% for $Z$ errors, compared to the threshold of 2.90% previously found using a two-stage decoder~[Quintavalle et al., 2021]. For the 4D toric code, for which both $X$ and $Z$ error correction is single-shot, our results are consistent with a sustainable single-shot threshold of 4.3% which is even higher than the threshold of 2.93% for the 2D toric code for the same noise model but using $L$ rounds of stabiliser measurement. We also explore the performance of balanced product and 4D hypergraph product codes which we show lead to a reduction in qubit overhead compared the surface code for phenomenological error rates as high as 1%.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. P. Panteleev and G. Kalachev, Degenerate Quantum LDPC Codes With Good Finite Length Performance, Quantum 5, 585 (2021).
  2. H. Bombín, Single-shot fault-tolerant quantum error correction, Physical Review X 5, 031043 (2015).
  3. B. J. Brown, N. H. Nickerson, and D. E. Browne, Fault-tolerant error correction with the gauge color code, Nature communications 7, 1 (2016).
  4. A. Kubica and J. Preskill, Cellular-automaton decoders with provable thresholds for topological codes, Physical review letters 123, 020501 (2019).
  5. M. Vasmer, D. E. Browne, and A. Kubica, Cellular automaton decoders for topological quantum codes with noisy measurements and beyond, Scientific reports 11, 1 (2021).
  6. E. T. Campbell, A theory of single-shot error correction for adversarial noise, Quantum Science and Technology 4, 025006 (2019).
  7. W. Zeng and L. P. Pryadko, Higher-dimensional quantum hypergraph-product codes with finite rates, Physical review letters 122, 230501 (2019).
  8. N. P. Breuckmann and V. Londe, Single-shot decoding of linear rate ldpc quantum codes with high performance, arXiv preprint arXiv:2001.03568  (2020).
  9. A. Kubica and M. Vasmer, Single-shot quantum error correction with the three-dimensional subsystem toric code, arXiv preprint arXiv:2106.02621  (2021).
  10. O. Fawzi, A. Grospellier, and A. Leverrier, Constant overhead quantum fault tolerance with quantum expander codes, Communications of the ACM 64, 106 (2020).
  11. J.-P. Tillich and G. Zémor, Quantum ldpc codes with positive rate and minimum distance proportional to the square root of the blocklength, IEEE Transactions on Information Theory 60, 1193 (2013).
  12. M. B. Hastings, Decoding in hyperbolic spaces: Ldpc codes with linear rate and efficient error correction, arXiv preprint arXiv:1312.2546  (2013).
  13. C. Wang, J. Harrington, and J. Preskill, Confinement-higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory, Annals of Physics 303, 31 (2003).
  14. A. Hatcher, Algebraic Topology (Cambridge University Press, 2002).
  15. N. P. Breuckmann and J. N. Eberhardt, Quantum low-density parity-check codes, PRX Quantum 2, 040101 (2021a).
  16. D. J. MacKay and R. M. Neal, Near shannon limit performance of low density parity check codes, Electronics letters 32, 1645 (1996).
  17. D. J. MacKay, Information theory, inference and learning algorithms (Cambridge university press, 2003).
  18. M. P. Fossorier, Iterative reliability-based decoding of low-density parity check codes, IEEE Journal on selected Areas in Communications 19, 908 (2001).
  19. M. P. Fossorier, S. Lin, and J. Snyders, Reliability-based syndrome decoding of linear block codes, IEEE Transactions on Information Theory 44, 388 (1998).
  20. E. Berlekamp, R. McEliece, and H. Van Tilborg, On the inherent intractability of certain coding problems (corresp.), IEEE Transactions on Information Theory 24, 384 (1978).
  21. M. Li and T. J. Yoder, A numerical study of bravyi-bacon-shor and subsystem hypergraph product codes, arXiv preprint arXiv:2002.06257  (2020).
  22. K.-Y. Kuo, I.-C. Chern, and C.-Y. Lai, Decoding of quantum data-syndrome codes via belief propagation, in 2021 IEEE International Symposium on Information Theory (ISIT) (2021) pp. 1552–1557.
  23. A. Ashikhmin, C.-Y. Lai, and T. A. Brun, Robust quantum error syndrome extraction by classical coding, in 2014 IEEE International Symposium on Information Theory (2014) pp. 546–550.
  24. J. Roffe, LDPC: Python tools for low density parity check codes (2022).
  25. D. Poulin and Y. Chung, On the iterative decoding of sparse quantum codes, arXiv preprint arXiv:0801.1241  (2008).
  26. Methods for constructing ldpc codes, https://glizen.com/radfordneal/ftp/LDPC-2012-02-11/pchk.html, accessed: 2021-01-10.
  27. N. P. Breuckmann and J. N. Eberhardt, Balanced product quantum codes, IEEE Transactions on Information Theory 67, 6653 (2021b).
  28. M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at http://www.codetables.de (2007), accessed on 2021-06-18.
  29. N. Delfosse and N. H. Nickerson, Almost-linear time decoding algorithm for topological codes, arXiv preprint arXiv:1709.06218  (2017).
  30. N. Delfosse, V. Londe, and M. E. Beverland, Toward a union-find decoder for quantum ldpc codes, IEEE Transactions on Information Theory 68, 3187 (2022).
  31. J. d. Crest, M. Mhalla, and V. Savin, Stabilizer inactivation for message-passing decoding of quantum ldpc codes, arXiv preprint arXiv:2205.06125  (2022).
  32. J. Erfanian, S. Pasupathy, and G. Gulak, Reduced complexity symbol detectors with parallel structure for isi channels, IEEE Transactions on Communications 42, 1661 (1994).
  33. M. P. Fossorier, M. Mihaljevic, and H. Imai, Reduced complexity iterative decoding of low-density parity check codes based on belief propagation, IEEE Transactions on communications 47, 673 (1999).
Citations (31)

Summary

Overview of Improved Single-Shot Decoding of Higher Dimensional Hypergraph Product Codes

This paper presents a detailed investigation into the single-shot decoding of higher-dimensional hypergraph product codes utilizing belief propagation combined with ordered-statistics decoding (BP+OSD). The research focuses on the advantageous outcomes of decoding both data qubit and syndrome measurement errors in a unified step, consequently achieving single-shot thresholds that surpass previously established benchmarks for these types of codes.

Key Findings

  • 3D and 4D Toric Code Performance: The paper reports a remarkable threshold of 7.1% for ZZ errors in the 3D toric code under a phenomenological noise model, significantly improving upon prior results which identified a threshold of 2.90% using a different two-stage decoder approach. For the 4D toric code, where both XX and ZZ error corrections are single-shot, a sustainable threshold of 4.3% is achieved. This represents an improvement compared to the 2D toric code's 2.93% threshold under similar conditions with LL rounds of stabilizer measurement.
  • Hypergraph Product Code Efficiency: The research highlights that both balanced product and 4D hypergraph product codes can reduce qubit overhead compared to traditional surface codes, which becomes particularly noticeable at phenomenological error rates up to 1%.

Theoretical Implications

This paper offers significant theoretical implications in quantum error correction, particularly regarding the use of hypergraph product codes for efficient quantum computation. The paper introduces advanced techniques in decoding strategies that encompass both data and measurement errors concurrently, offering significant improvements over classical methods that traditionally employ separate stages.

  • Metacode Utilization in Chain Complexes: The research exploits the properties of chain complexes and F2\mathbb{F}_2-homology, which are instrumental when analyzing and constructing CSS codes. This methodological framework allows for more effective handling of measurement errors, a challenge in implementing fault-tolerant quantum computing systems.
  • BP+OSD Integration: The integration of belief propagation with ordered-statistics decoding illustrates enhanced robustness against split-belief phenomena—a prevalent issue when decoding degenerately structured quantum error states. The utilization of metachecks in the Tanner graph structure further optimizes decoding accuracy and efficiency.

Practical Implications

On the practical side, the improved decoding strategies showcased in this research hold significant promise for the development of scalable quantum computing architectures by reducing computational overhead and enhancing error correction capabilities, particularly in noisy environments.

  • Qubit Overhead Reduction: By demonstrating that balanced product codes achieve comparable error rates to large block size surface codes while utilizing significantly fewer qubits, this work hints at possible reductions in necessary physical resources for quantum error correction, contributing to more feasible quantum computing implementations.

Future Developments

Reflecting on the trajectory of advancements in this field, future research might explore further integration of BP+OSD within various classes of quantum codes, particularly focusing on mitigating computational overhead to facilitate real-time implementations. Expanding these decoding approaches to encompass circuit-level noise models could also yield deeper insights into practical applications in quantum hardware.

This paper's innovative methodologies and promising results represent a pivotal step toward advancing quantum error correction, impacting both theoretical frameworks and practical implementations of quantum computing technologies.

Youtube Logo Streamline Icon: https://streamlinehq.com