Improved single-shot decoding of higher dimensional hypergraph product codes (2206.03122v2)
Abstract: In this work we study the single-shot performance of higher dimensional hypergraph product codes decoded using belief-propagation and ordered-statistics decoding [Panteleev and Kalachev, 2021]. We find that decoding data qubit and syndrome measurement errors together in a single stage leads to single-shot thresholds that greatly exceed all previously observed single-shot thresholds for these codes. For the 3D toric code and a phenomenological noise model, our results are consistent with a sustainable threshold of 7.1% for $Z$ errors, compared to the threshold of 2.90% previously found using a two-stage decoder~[Quintavalle et al., 2021]. For the 4D toric code, for which both $X$ and $Z$ error correction is single-shot, our results are consistent with a sustainable single-shot threshold of 4.3% which is even higher than the threshold of 2.93% for the 2D toric code for the same noise model but using $L$ rounds of stabiliser measurement. We also explore the performance of balanced product and 4D hypergraph product codes which we show lead to a reduction in qubit overhead compared the surface code for phenomenological error rates as high as 1%.
- P. Panteleev and G. Kalachev, Degenerate Quantum LDPC Codes With Good Finite Length Performance, Quantum 5, 585 (2021).
- H. Bombín, Single-shot fault-tolerant quantum error correction, Physical Review X 5, 031043 (2015).
- B. J. Brown, N. H. Nickerson, and D. E. Browne, Fault-tolerant error correction with the gauge color code, Nature communications 7, 1 (2016).
- A. Kubica and J. Preskill, Cellular-automaton decoders with provable thresholds for topological codes, Physical review letters 123, 020501 (2019).
- M. Vasmer, D. E. Browne, and A. Kubica, Cellular automaton decoders for topological quantum codes with noisy measurements and beyond, Scientific reports 11, 1 (2021).
- E. T. Campbell, A theory of single-shot error correction for adversarial noise, Quantum Science and Technology 4, 025006 (2019).
- W. Zeng and L. P. Pryadko, Higher-dimensional quantum hypergraph-product codes with finite rates, Physical review letters 122, 230501 (2019).
- N. P. Breuckmann and V. Londe, Single-shot decoding of linear rate ldpc quantum codes with high performance, arXiv preprint arXiv:2001.03568 (2020).
- A. Kubica and M. Vasmer, Single-shot quantum error correction with the three-dimensional subsystem toric code, arXiv preprint arXiv:2106.02621 (2021).
- O. Fawzi, A. Grospellier, and A. Leverrier, Constant overhead quantum fault tolerance with quantum expander codes, Communications of the ACM 64, 106 (2020).
- J.-P. Tillich and G. Zémor, Quantum ldpc codes with positive rate and minimum distance proportional to the square root of the blocklength, IEEE Transactions on Information Theory 60, 1193 (2013).
- M. B. Hastings, Decoding in hyperbolic spaces: Ldpc codes with linear rate and efficient error correction, arXiv preprint arXiv:1312.2546 (2013).
- C. Wang, J. Harrington, and J. Preskill, Confinement-higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory, Annals of Physics 303, 31 (2003).
- A. Hatcher, Algebraic Topology (Cambridge University Press, 2002).
- N. P. Breuckmann and J. N. Eberhardt, Quantum low-density parity-check codes, PRX Quantum 2, 040101 (2021a).
- D. J. MacKay and R. M. Neal, Near shannon limit performance of low density parity check codes, Electronics letters 32, 1645 (1996).
- D. J. MacKay, Information theory, inference and learning algorithms (Cambridge university press, 2003).
- M. P. Fossorier, Iterative reliability-based decoding of low-density parity check codes, IEEE Journal on selected Areas in Communications 19, 908 (2001).
- M. P. Fossorier, S. Lin, and J. Snyders, Reliability-based syndrome decoding of linear block codes, IEEE Transactions on Information Theory 44, 388 (1998).
- E. Berlekamp, R. McEliece, and H. Van Tilborg, On the inherent intractability of certain coding problems (corresp.), IEEE Transactions on Information Theory 24, 384 (1978).
- M. Li and T. J. Yoder, A numerical study of bravyi-bacon-shor and subsystem hypergraph product codes, arXiv preprint arXiv:2002.06257 (2020).
- K.-Y. Kuo, I.-C. Chern, and C.-Y. Lai, Decoding of quantum data-syndrome codes via belief propagation, in 2021 IEEE International Symposium on Information Theory (ISIT) (2021) pp. 1552–1557.
- A. Ashikhmin, C.-Y. Lai, and T. A. Brun, Robust quantum error syndrome extraction by classical coding, in 2014 IEEE International Symposium on Information Theory (2014) pp. 546–550.
- J. Roffe, LDPC: Python tools for low density parity check codes (2022).
- D. Poulin and Y. Chung, On the iterative decoding of sparse quantum codes, arXiv preprint arXiv:0801.1241 (2008).
- Methods for constructing ldpc codes, https://glizen.com/radfordneal/ftp/LDPC-2012-02-11/pchk.html, accessed: 2021-01-10.
- N. P. Breuckmann and J. N. Eberhardt, Balanced product quantum codes, IEEE Transactions on Information Theory 67, 6653 (2021b).
- M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at http://www.codetables.de (2007), accessed on 2021-06-18.
- N. Delfosse and N. H. Nickerson, Almost-linear time decoding algorithm for topological codes, arXiv preprint arXiv:1709.06218 (2017).
- N. Delfosse, V. Londe, and M. E. Beverland, Toward a union-find decoder for quantum ldpc codes, IEEE Transactions on Information Theory 68, 3187 (2022).
- J. d. Crest, M. Mhalla, and V. Savin, Stabilizer inactivation for message-passing decoding of quantum ldpc codes, arXiv preprint arXiv:2205.06125 (2022).
- J. Erfanian, S. Pasupathy, and G. Gulak, Reduced complexity symbol detectors with parallel structure for isi channels, IEEE Transactions on Communications 42, 1661 (1994).
- M. P. Fossorier, M. Mihaljevic, and H. Imai, Reduced complexity iterative decoding of low-density parity check codes based on belief propagation, IEEE Transactions on communications 47, 673 (1999).