Heisenberg-limited metrology with coherent control on the probes' configuration (2206.03052v1)
Abstract: A central feature of quantum metrology is the possibility of Heisenberg scaling, a quadratic improvement over the limits of classical statistics. This scaling, however, is notoriously fragile to noise. While for some noise types it can be restored through error correction, for other important types, such as dephasing, the Heisenberg scaling appears to be irremediably lost. Here we show that this limitation can sometimes be lifted if the experimenter has the ability to probe physical processes in a coherent superposition of alternative configurations. As a concrete example, we consider the problem of phase estimation in the presence of a random phase kick, which in normal conditions is known to prevent the Heisenberg scaling. We provide a parallel protocol that achieves Heisenberg scaling with respect to the probes' energy, as well as a sequential protocol that achieves Heisenberg scaling with respect to the total probing time. In addition, we show that Heisenberg scaling can also be achieved for frequency estimation in the presence of continuous-time dephasing noise, by combining the superposition of paths with fast control operations.