Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Liouville quantum gravity from random matrix dynamics (2206.03029v3)

Published 7 Jun 2022 in math.PR, math-ph, and math.MP

Abstract: We establish the first connection between $2d$ Liouville quantum gravity and natural dynamics of random matrices. In particular, we show that if $(U_t)$ is a Brownian motion on the unitary group at equilibrium, then the measures $$ |\det(U_t - e{i \theta})|{\gamma} dt d\theta $$ converge in the limit of large dimension to the $2d$ LQG measure, a properly normalized exponential of the $2d$ Gaussian free field. Gaussian free field type fluctuations associated with these dynamics were first established by Spohn (1998) and convergence to the LQG measure in $2d$ settings was conjectured since the work of Webb (2014), who proved the convergence of related one dimensional measures by using inputs from Riemann-Hilbert theory. The convergence follows from the first multi-time extension of the result by Widom (1973) on Fisher-Hartwig asymptotics of Toeplitz determinants with real symbols. To prove these, we develop a general surgery argument and combine determinantal point processes estimates with stochastic analysis on Lie group, providing in passing a probabilistic proof of Webb's $1d$ result. We believe the techniques will be more broadly applicable to matrix dynamics out of equilibrium, joint moments of determinants for classes of correlated random matrices, and the characteristic polynomial of non-Hermitian random matrices.

Citations (16)

Summary

We haven't generated a summary for this paper yet.