Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GRETEL: A unified framework for Graph Counterfactual Explanation Evaluation (2206.02957v1)

Published 7 Jun 2022 in cs.LG, cs.AI, and stat.ML

Abstract: Machine Learning (ML) systems are a building part of the modern tools which impact our daily life in several application domains. Due to their black-box nature, those systems are hardly adopted in application domains (e.g. health, finance) where understanding the decision process is of paramount importance. Explanation methods were developed to explain how the ML model has taken a specific decision for a given case/instance. Graph Counterfactual Explanations (GCE) is one of the explanation techniques adopted in the Graph Learning domain. The existing works of Graph Counterfactual Explanations diverge mostly in the problem definition, application domain, test data, and evaluation metrics, and most existing works do not compare exhaustively against other counterfactual explanation techniques present in the literature. We present GRETEL, a unified framework to develop and test GCE methods in several settings. GRETEL is a highly extensible evaluation framework which promotes the Open Science and the evaluations reproducibility by providing a set of well-defined mechanisms to integrate and manage easily: both real and synthetic datasets, ML models, state-of-the-art explanation techniques, and evaluation measures. To present GRETEL, we show the experiments conducted to integrate and test several synthetic and real datasets with several existing explanation techniques and base ML models.

Citations (14)

Summary

We haven't generated a summary for this paper yet.