Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A semi-conjugate gradient method for solving unsymmetric positive definite linear systems (2206.02951v2)

Published 7 Jun 2022 in math.NA, cs.DS, and cs.NA

Abstract: The conjugate gradient (CG) method is a classic Krylov subspace method for solving symmetric positive definite linear systems. We introduce an analogous semi-conjugate gradient (SCG) method for unsymmetric positive definite linear systems. Unlike CG, SCG requires the solution of a lower triangular linear system to produce each semi-conjugate direction. We prove that SCG is theoretically equivalent to the full orthogonalization method (FOM), which is based on the Arnoldi process and converges in a finite number of steps. Because SCG's triangular system increases in size each iteration, we study a sliding window implementation (SWI) to improve efficiency, and show that the directions produced are still locally semi-conjugate. A counterexample illustrates that SWI is different from the direct incomplete orthogonalization method (DIOM), which is FOM with a sliding window. Numerical experiments from the convection-diffusion equation and other applications show that SCG is robust and that the sliding window implementation SWI allows SCG to solve large systems efficiently.

Summary

We haven't generated a summary for this paper yet.