Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simple Mechanisms for Welfare Maximization in Rich Advertising Auctions (2206.02948v1)

Published 6 Jun 2022 in cs.GT

Abstract: Internet ad auctions have evolved from a few lines of text to richer informational layouts that include images, sitelinks, videos, etc. Ads in these new formats occupy varying amounts of space, and an advertiser can provide multiple formats, only one of which can be shown. The seller is now faced with a multi-parameter mechanism design problem. Computing an efficient allocation is computationally intractable, and therefore the standard Vickrey-Clarke-Groves (VCG) auction, while truthful and welfare-optimal, is impractical. In this paper, we tackle a fundamental problem in the design of modern ad auctions. We adopt a Myersonian'' approach and study allocation rules that are monotone both in the bid and set of rich ads. We show that such rules can be paired with a payment function to give a truthful auction. Our main technical challenge is designing a monotone rule that yields a good approximation to the optimal welfare. Monotonicity doesn't hold for standard algorithms, e.g. the incremental bang-per-buck order, that give good approximations toknapsack-like'' problems such as ours. In fact, we show that no deterministic monotone rule can approximate the optimal welfare within a factor better than $2$ (while there is a non-monotone FPTAS). Our main result is a new, simple, greedy and monotone allocation rule that guarantees a $3$ approximation. In ad auctions in practice, monotone allocation rules are often paired with the so-called Generalized Second Price (GSP) payment rule, which charges the minimum threshold price below which the allocation changes. We prove that, even though our monotone allocation rule paired with GSP is not truthful, its Price of Anarchy (PoA) is bounded. Under standard no overbidding assumption, we prove a pure PoA bound of $6$ and a Bayes-Nash PoA bound of $\frac{6}{(1 - \frac{1}{e})}$. Finally, we experimentally test our algorithms on real-world data.

Citations (5)

Summary

We haven't generated a summary for this paper yet.