Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic estimation of Green's functions with application to diffusion and advection-diffusion-reaction problems (2206.02521v1)

Published 11 May 2022 in math.NA and cs.NA

Abstract: A stochastic method is described for estimating Green's functions (GF's), appropriate to linear advection-diffusion-reaction transport problems, evolving in arbitrary geometries. By allowing straightforward construction of approximate, though high-accuracy GF's, within any geometry, the technique solves the central challenge in obtaining Green's function solutions. In contrast to Monte Carlo solutions of individual transport problems, subject to specific sets of conditions and forcing, the proposed technique produces approximate GF's that can be used: a) to obtain (infinite) sets of solutions, subject to any combination of (random and deterministic) boundary, initial, and internal forcing, b) as high fidelity direct models in inverse problems, and c) as high quality process models in thermal and mass transport design, optimization, and process control problems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.