Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bi-SimCut: A Simple Strategy for Boosting Neural Machine Translation (2206.02368v2)

Published 6 Jun 2022 in cs.CL and cs.LG

Abstract: We introduce Bi-SimCut: a simple but effective training strategy to boost neural machine translation (NMT) performance. It consists of two procedures: bidirectional pretraining and unidirectional finetuning. Both procedures utilize SimCut, a simple regularization method that forces the consistency between the output distributions of the original and the cutoff sentence pairs. Without leveraging extra dataset via back-translation or integrating large-scale pretrained model, Bi-SimCut achieves strong translation performance across five translation benchmarks (data sizes range from 160K to 20.2M): BLEU scores of 31.16 for en -> de and 38.37 for de -> en on the IWSLT14 dataset, 30.78 for en -> de and 35.15 for de -> en on the WMT14 dataset, and 27.17 for zh -> en on the WMT17 dataset. SimCut is not a new method, but a version of Cutoff (Shen et al., 2020) simplified and adapted for NMT, and it could be considered as a perturbation-based method. Given the universality and simplicity of SimCut and Bi-SimCut, we believe they can serve as strong baselines for future NMT research.

Citations (13)

Summary

We haven't generated a summary for this paper yet.