Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying quenched jets in heavy ion collisions with machine learning (2206.01628v2)

Published 3 Jun 2022 in hep-ph, hep-ex, and physics.comp-ph

Abstract: Measurements of jet substructure in ultra-relativistic heavy ion collisions suggest that the jet showering process is modified by the interaction with quark gluon plasma. Modifications of the hard substructure of jets can be explored with modern data-driven techniques. In this study, a machine learning approach to the identification of quenched jets is designed. Jet showering processes are simulated with a jet quenching model Jewel and a non-quenching model Pythia 8. Sequential substructure variables are extracted from the jet clustering history following an angular-ordered sequence and are used in the training of a neural network built on top of a long short-term memory network. We show that this approach successfully identifies the quenching effect in the presence of the large uncorrelated background of soft particles created in heavy ion collisions.

Summary

We haven't generated a summary for this paper yet.