Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Privacy Properties of GAN-generated Samples (2206.01349v1)

Published 3 Jun 2022 in cs.LG, cs.AI, and cs.CR

Abstract: The privacy implications of generative adversarial networks (GANs) are a topic of great interest, leading to several recent algorithms for training GANs with privacy guarantees. By drawing connections to the generalization properties of GANs, we prove that under some assumptions, GAN-generated samples inherently satisfy some (weak) privacy guarantees. First, we show that if a GAN is trained on m samples and used to generate n samples, the generated samples are (epsilon, delta)-differentially-private for (epsilon, delta) pairs where delta scales as O(n/m). We show that under some special conditions, this upper bound is tight. Next, we study the robustness of GAN-generated samples to membership inference attacks. We model membership inference as a hypothesis test in which the adversary must determine whether a given sample was drawn from the training dataset or from the underlying data distribution. We show that this adversary can achieve an area under the ROC curve that scales no better than O(m{-1/4}).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zinan Lin (42 papers)
  2. Vyas Sekar (34 papers)
  3. Giulia Fanti (55 papers)
Citations (22)