Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HEX: Human-in-the-loop Explainability via Deep Reinforcement Learning (2206.01343v1)

Published 2 Jun 2022 in cs.LG and stat.ML

Abstract: The use of ML models in decision-making contexts, particularly those used in high-stakes decision-making, are fraught with issue and peril since a person - not a machine - must ultimately be held accountable for the consequences of the decisions made using such systems. Machine learning explainability (MLX) promises to provide decision-makers with prediction-specific rationale, assuring them that the model-elicited predictions are made for the right reasons and are thus reliable. Few works explicitly consider this key human-in-the-loop (HITL) component, however. In this work we propose HEX, a human-in-the-loop deep reinforcement learning approach to MLX. HEX incorporates 0-distrust projection to synthesize decider specific explanation-providing policies from any arbitrary classification model. HEX is also constructed to operate in limited or reduced training data scenarios, such as those employing federated learning. Our formulation explicitly considers the decision boundary of the ML model in question, rather than the underlying training data, which is a shortcoming of many model-agnostic MLX methods. Our proposed methods thus synthesize HITL MLX policies that explicitly capture the decision boundary of the model in question for use in limited data scenarios.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Michael T. Lash (12 papers)