Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Super-resolving 2D stress tensor field conserving equilibrium constraints using physics informed U-Net (2206.01122v1)

Published 2 Jun 2022 in cs.LG

Abstract: In a finite element analysis, using a large number of grids is important to obtain accurate results, but is a resource-consuming task. Aiming to real-time simulation and optimization, it is desired to obtain fine grid analysis results within a limited resource. This paper proposes a super-resolution method that predicts a stress tensor field in a high-resolution from low-resolution contour plots by utilizing a U-Net-based neural network which is called PI-UNet. In addition, the proposed model minimizes the residual of the equilibrium constraints so that it outputs a physically reasonable solution. The proposed network is trained with FEM results of simple shapes, and is validated with a complicated realistic shape to evaluate generalization capability. Although ESRGAN is a standard model for image super-resolution, the proposed U-Net based model outperforms ESRGAN model in the stress tensor prediction task.

Citations (2)

Summary

We haven't generated a summary for this paper yet.