Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Laser Spot: Robust and Covert Physical-World Attack to DNNs (2206.01034v2)

Published 2 Jun 2022 in cs.CV and cs.AI

Abstract: Most existing deep neural networks (DNNs) are easily disturbed by slight noise. However, there are few researches on physical attacks by deploying lighting equipment. The light-based physical attacks has excellent covertness, which brings great security risks to many vision-based applications (such as self-driving). Therefore, we propose a light-based physical attack, called adversarial laser spot (AdvLS), which optimizes the physical parameters of laser spots through genetic algorithm to perform physical attacks. It realizes robust and covert physical attack by using low-cost laser equipment. As far as we know, AdvLS is the first light-based physical attack that perform physical attacks in the daytime. A large number of experiments in the digital and physical environments show that AdvLS has excellent robustness and covertness. In addition, through in-depth analysis of the experimental data, we find that the adversarial perturbations generated by AdvLS have superior adversarial attack migration. The experimental results show that AdvLS impose serious interference to advanced DNNs, we call for the attention of the proposed AdvLS. The code of AdvLS is available at: https://github.com/ChengYinHu/AdvLS

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chengyin Hu (13 papers)
  2. Yilong Wang (38 papers)
  3. Kalibinuer Tiliwalidi (4 papers)
  4. Wen Li (107 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.