Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

xView3-SAR: Detecting Dark Fishing Activity Using Synthetic Aperture Radar Imagery (2206.00897v4)

Published 2 Jun 2022 in cs.CV and cs.CY

Abstract: Unsustainable fishing practices worldwide pose a major threat to marine resources and ecosystems. Identifying vessels that do not show up in conventional monitoring systems -- known as ``dark vessels'' -- is key to managing and securing the health of marine environments. With the rise of satellite-based synthetic aperture radar (SAR) imaging and modern ML, it is now possible to automate detection of dark vessels day or night, under all-weather conditions. SAR images, however, require a domain-specific treatment and are not widely accessible to the ML community. Maritime objects (vessels and offshore infrastructure) are relatively small and sparse, challenging traditional computer vision approaches. We present the largest labeled dataset for training ML models to detect and characterize vessels and ocean structures in SAR imagery. xView3-SAR consists of nearly 1,000 analysis-ready SAR images from the Sentinel-1 mission that are, on average, 29,400-by-24,400 pixels each. The images are annotated using a combination of automated and manual analysis. Co-located bathymetry and wind state rasters accompany every SAR image. We also provide an overview of the xView3 Computer Vision Challenge, an international competition using xView3-SAR for ship detection and characterization at large scale. We release the data (\href{https://iuu.xview.us/}{https://iuu.xview.us/}) and code (\href{https://github.com/DIUx-xView}{https://github.com/DIUx-xView}) to support ongoing development and evaluation of ML approaches for this important application.

Citations (30)

Summary

We haven't generated a summary for this paper yet.