Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Bayesian Neural Subnetwork Ensembles (2206.00794v2)

Published 1 Jun 2022 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: Deep ensembles have emerged as a powerful technique for improving predictive performance and enhancing model robustness across various applications by leveraging model diversity. However, traditional deep ensemble methods are often computationally expensive and rely on deterministic models, which may limit their flexibility. Additionally, while sparse subnetworks of dense models have shown promise in matching the performance of their dense counterparts and even enhancing robustness, existing methods for inducing sparsity typically incur training costs comparable to those of training a single dense model, as they either gradually prune the network during training or apply thresholding post-training. In light of these challenges, we propose an approach for sequential ensembling of dynamic Bayesian neural subnetworks that consistently maintains reduced model complexity throughout the training process while generating diverse ensembles in a single forward pass. Our approach involves an initial exploration phase to identify high-performing regions within the parameter space, followed by multiple exploitation phases that take advantage of the compactness of the sparse model. These exploitation phases quickly converge to different minima in the energy landscape, corresponding to high-performing subnetworks that together form a diverse and robust ensemble. We empirically demonstrate that our proposed approach outperforms traditional dense and sparse deterministic and Bayesian ensemble models in terms of prediction accuracy, uncertainty estimation, out-of-distribution detection, and adversarial robustness.

Citations (4)

Summary

We haven't generated a summary for this paper yet.