Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inter-BIN: Interaction-based Cross-architecture IoT Binary Similarity Comparison (2206.00219v1)

Published 1 Jun 2022 in cs.CR

Abstract: The big wave of Internet of Things (IoT) malware reflects the fragility of the current IoT ecosystem. Research has found that IoT malware can spread quickly on devices of different processer architectures, which leads our attention to cross-architecture binary similarity comparison technology. The goal of binary similarity comparison is to determine whether the semantics of two binary snippets is similar. Existing learning-based approaches usually learn the representations of binary code snippets individually and perform similarity matching based on the distance metric, without considering inter-binary semantic interactions. Moreover, they often rely on the large-scale external code corpus for instruction embeddings pre-training, which is heavyweight and easy to suffer the out-of-vocabulary (OOV) problem. In this paper, we propose an interaction-based cross-architecture IoT binary similarity comparison system, Inter-BIN. Our key insight is to introduce interaction between instruction sequences by co-attention mechanism, which can flexibly perform soft alignment of semantically related instructions from different architectures. And we design a lightweight multi-feature fusion-based instruction embedding method, which can avoid the heavy workload and the OOV problem of previous approaches. Extensive experiments show that Inter-BIN can significantly outperform state-of-the-art approaches on cross-architecture binary similarity comparison tasks of different input granularities. Furthermore, we present an IoT malware function matching dataset from real network environments, CrossMal, containing 1,878,437 cross-architecture reuse function pairs. Experimental results on CrossMal prove that Inter-BIN is practical and scalable on real-world binary similarity comparison collections.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Qige Song (4 papers)
  2. Yongzheng Zhang (14 papers)
  3. Binglai Wang (1 paper)
  4. Yige Chen (20 papers)
Citations (8)