Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

COIN: Co-Cluster Infomax for Bipartite Graphs (2206.00006v2)

Published 31 May 2022 in cs.LG and cs.AI

Abstract: Bipartite graphs are powerful data structures to model interactions between two types of nodes, which have been used in a variety of applications, such as recommender systems, information retrieval, and drug discovery. A fundamental challenge for bipartite graphs is how to learn informative node embeddings. Despite the success of recent self-supervised learning methods on bipartite graphs, their objectives are discriminating instance-wise positive and negative node pairs, which could contain cluster-level errors. In this paper, we introduce a novel co-cluster infomax (COIN) framework, which captures the cluster-level information by maximizing the mutual information of co-clusters. Different from previous infomax methods which estimate mutual information by neural networks, COIN could easily calculate mutual information. Besides, COIN is an end-to-end coclustering method which can be trained jointly with other objective functions and optimized via back-propagation. Furthermore, we also provide theoretical analysis for COIN. We theoretically prove that COIN is able to effectively increase the mutual information of node embeddings and COIN is upper-bounded by the prior distributions of nodes. We extensively evaluate the proposed COIN framework on various benchmark datasets and tasks to demonstrate the effectiveness of COIN.

Citations (18)

Summary

We haven't generated a summary for this paper yet.