Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Skeleton-based Action Recognition via Temporal-Channel Aggregation (2205.15936v2)

Published 31 May 2022 in cs.CV

Abstract: Skeleton-based action recognition methods are limited by the semantic extraction of spatio-temporal skeletal maps. However, current methods have difficulty in effectively combining features from both temporal and spatial graph dimensions and tend to be thick on one side and thin on the other. In this paper, we propose a Temporal-Channel Aggregation Graph Convolutional Networks (TCA-GCN) to learn spatial and temporal topologies dynamically and efficiently aggregate topological features in different temporal and channel dimensions for skeleton-based action recognition. We use the Temporal Aggregation module to learn temporal dimensional features and the Channel Aggregation module to efficiently combine spatial dynamic channel-wise topological features with temporal dynamic topological features. In addition, we extract multi-scale skeletal features on temporal modeling and fuse them with an attention mechanism. Extensive experiments show that our model results outperform state-of-the-art methods on the NTU RGB+D, NTU RGB+D 120, and NW-UCLA datasets.

Citations (20)

Summary

We haven't generated a summary for this paper yet.