Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven Reference Trajectory Optimization for Precision Motion Systems (2205.15694v2)

Published 31 May 2022 in eess.SY, cs.RO, and cs.SY

Abstract: We propose a data-driven optimization-based pre-compensation method to improve the contour tracking performance of precision motion stages by modifying the reference trajectory and without modifying any built-in low-level controllers. The position of the precision motion stage is predicted with data-driven models, a linear low-fidelity model is used to optimize traversal time, by changing the path velocity and acceleration profiles then a non-linear high-fidelity model is used to refine the previously found time-optimal solution. We experimentally demonstrate that the proposed method is capable of simultaneously improving the productivity and accuracy of a high precision motion stage. Given the data-based nature of the models, the proposed method can easily be adapted to a wide family of precision motion systems.

Citations (6)

Summary

We haven't generated a summary for this paper yet.