Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the braided Connes-Moscovici construction (2205.15641v1)

Published 31 May 2022 in math.KT and math.QA

Abstract: In $1998$, Connes and Moscovici defined the cyclic cohomology of Hopf algebras. In $2010$, Khalkhali and Pourkia proposed a braided generalization: to any Hopf algebra $H$ in a braided category $\mathcal B$, they associate a paracocyclic object in $\mathcal B$. In this paper we explicitly compute the powers of the paracocyclic operator of this paracocyclic object. Also, we introduce twisted modular pairs in involution for $H$ and derive (co)cyclic modules from them. Finally, we relate the paracocyclic object associated with $H$ to that associated with an $H$-module coalgebra via a categorical version of the Connes-Moscovici trace.

Summary

We haven't generated a summary for this paper yet.