Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentiable Invariant Causal Discovery (2205.15638v4)

Published 31 May 2022 in cs.LG, cs.DS, and stat.ME

Abstract: Learning causal structure from observational data is a fundamental challenge in machine learning. However, the majority of commonly used differentiable causal discovery methods are non-identifiable, turning this problem into a continuous optimization task prone to data biases. In many real-life situations, data is collected from different environments, in which the functional relations remain consistent across environments, while the distribution of additive noises may vary. This paper proposes Differentiable Invariant Causal Discovery (DICD), utilizing the multi-environment information based on a differentiable framework to avoid learning spurious edges and wrong causal directions. Specifically, DICD aims to discover the environment-invariant causation while removing the environment-dependent correlation. We further formulate the constraint that enforces the target structure equation model to maintain optimal across the environments. Theoretical guarantees for the identifiability of proposed DICD are provided under mild conditions with enough environments. Extensive experiments on synthetic and real-world datasets verify that DICD outperforms state-of-the-art causal discovery methods up to 36% in SHD. Our code will be open-sourced.

Citations (1)

Summary

We haven't generated a summary for this paper yet.