Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projective representations of real reductive Lie groups and the gradient map (2205.15632v1)

Published 31 May 2022 in math.RT

Abstract: Let $G$ be a connected semisimple noncompact real Lie group and let $\rho: G \longrightarrow \mathrm{SL}(V)$ be a representation on a finite dimensional vector space $V$ over $\mathbb R$, with $\rho(G)$ closed in $\mathrm{SL}(V)$. Identifying $G$ with $\rho(G)$, we assume there exists a $K$-invariant scalar product $\mathtt g$ such that $G=K\exp(\mathfrak p)$, where $K=\mathrm{SO}(V,\mathtt g)\cap G$, $\mathfrak p=\mathrm{Sym}_o (V,\mathtt g)\cap \mathfrak g$ and $\mathfrak g$ denotes the Lie algebra of $G$. Here $\mathrm{Sym}_o (V,\mathtt g)$ denotes the set of symmetric endomorphisms with trace zero. Using the $G$-gradient map techniques we analyze the natural projective representation of $G$ on $\mathbb P(V)$.

Summary

We haven't generated a summary for this paper yet.