Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Event-Level Sentiment Analysis with Structured Arguments (2205.15511v1)

Published 31 May 2022 in cs.CL

Abstract: Previous studies about event-level sentiment analysis (SA) usually model the event as a topic, a category or target terms, while the structured arguments (e.g., subject, object, time and location) that have potential effects on the sentiment are not well studied. In this paper, we redefine the task as structured event-level SA and propose an End-to-End Event-level Sentiment Analysis ($\textit{E}{3}\textit{SA}$) approach to solve this issue. Specifically, we explicitly extract and model the event structure information for enhancing event-level SA. Extensive experiments demonstrate the great advantages of our proposed approach over the state-of-the-art methods. Noting the lack of the dataset, we also release a large-scale real-world dataset with event arguments and sentiment labelling for promoting more researches\footnote{The dataset is available at https://github.com/zhangqi-here/E3SA}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Qi Zhang (784 papers)
  2. Jie Zhou (687 papers)
  3. Qin Chen (57 papers)
  4. Qinchun Bai (2 papers)
  5. Liang He (202 papers)
Citations (7)