Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tame parahoric nonabelian Hodge correspondence on curves (2205.15475v3)

Published 31 May 2022 in math.AG

Abstract: The nonabelian Hodge correspondence for vector bundles over noncompact curves is adequately described by implementing a weighted filtration on the objects involved. In order to establish a full correspondence between a Dolbeault and a de Rham space for a general complex reductive group $G$, we introduce torsors given by parahoric group schemes in the sense of Bruhat--Tits. Combined with existing results on the Riemann--Hilbert correspondence for logarithmic parahoric connections, this gives a full nonabelian Hodge correspondence from Higgs bundles to fundamental group representations over a noncompact curve beyond the $\text{GL}_n(\mathbb{C})$-case.

Summary

We haven't generated a summary for this paper yet.