Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RankSim: Ranking Similarity Regularization for Deep Imbalanced Regression (2205.15236v2)

Published 30 May 2022 in cs.LG, cs.AI, and cs.CV

Abstract: Data imbalance, in which a plurality of the data samples come from a small proportion of labels, poses a challenge in training deep neural networks. Unlike classification, in regression the labels are continuous, potentially boundless, and form a natural ordering. These distinct features of regression call for new techniques that leverage the additional information encoded in label-space relationships. This paper presents the RankSim (ranking similarity) regularizer for deep imbalanced regression, which encodes an inductive bias that samples that are closer in label space should also be closer in feature space. In contrast to recent distribution smoothing based approaches, RankSim captures both nearby and distant relationships: for a given data sample, RankSim encourages the sorted list of its neighbors in label space to match the sorted list of its neighbors in feature space. RankSim is complementary to conventional imbalanced learning techniques, including re-weighting, two-stage training, and distribution smoothing, and lifts the state-of-the-art performance on three imbalanced regression benchmarks: IMDB-WIKI-DIR, AgeDB-DIR, and STS-B-DIR.

Citations (34)

Summary

We haven't generated a summary for this paper yet.