Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The strong chromatic index of 1-planar graphs (2205.14680v5)

Published 29 May 2022 in math.CO

Abstract: The chromatic index $\chi'(G)$ of a graph $G$ is the smallest $k$ for which $G$ admits an edge $k$-coloring such that any two adjacent edges have distinct colors. The strong chromatic index $\chi's(G)$ of $G$ is the smallest $k$ such that $G$ has an edge $k$-coloring with the condition that any two edges at distance at most 2 receive distinct colors. A graph is 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. In this paper, we show that every graph $G$ with maximum average degree $\bar{d}(G)$ has $\chi'{s}(G)\le (2\bar{d}(G)-1)\chi'(G)$. As a corollary, we prove that every 1-planar graph $G$ with maximum degree $\Delta$ has $\chi'{\rm s}(G)\le 14\Delta$, which improves a result, due to Bensmail et al., which says that $\chi'{\rm s}(G)\le 24\Delta$ if $\Delta\ge 56$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.