Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Increasing rate of weighted product of partial quotients in continued fractions (2205.14604v1)

Published 29 May 2022 in math.NT

Abstract: Let $[a_1(x),a_2(x),\cdots,a_n(x),\cdots]$ be the continued fraction expansion of $x\in[0,1)$. In this paper, we study the increasing rate of the weighted product $a{t_0}n(x)a{t_1}{n+1}(x)\cdots a{t_m}_{n+m}(x)$ ,where $t_i\in \mathbb{R}+\ (0\leq i \leq m)$ are weights. More precisely, let $\varphi:\mathbb{N}\to\mathbb{R}+$ be a function with $\varphi(n)/n\to \infty$ as $n\to \infty$. For any $(t_0,\cdots,t_m)\in \mathbb{R}{m+1}_+$ with $t_i\geq 0$ and at least one $t_i\neq0 \ (0\leq i\leq m)$, the Hausdorff dimension of the set $$\underline{E}({t_i}{i=0}m,\varphi)=\left{x\in[0,1):\liminf\limits{n\to \infty}\dfrac{\log \left(a{t_0}n(x)a{t_1}{n+1}(x)\cdots a{t_m}_{n+m}(x)\right)}{\varphi(n)}=1\right}$$ is obtained. Under the condition that $(t_0,\cdots,t_m)\in \mathbb{R}{m+1}_+$ with $0<t_0\leq t_1\leq \cdots \leq t_m$, we also obtain the Hausdorff dimension of the set \begin{equation*} \overline{E}({t_i}{i=0}m,\varphi)=\left{x\in[0,1):\limsup\limits{n\to \infty}\dfrac{\log \left(a{t_0}n(x)a{t_1}{n+1}(x)\cdots a{t_m}_{n+m}(x)\right)}{\varphi(n)}=1\right}.\end{equation*}

Summary

We haven't generated a summary for this paper yet.