Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visual Perception of Building and Household Vulnerability from Streets (2205.14460v1)

Published 28 May 2022 in cs.LG and cs.CV

Abstract: In developing countries, building codes often are outdated or not enforced. As a result, a large portion of the housing stock is substandard and vulnerable to natural hazards and climate related events. Assessing housing quality is key to inform public policies and private investments. Standard assessment methods are typically carried out only on a sample / pilot basis due to its high costs or, when complete, tend to be obsolete due to the lack of compliance with recommended updating standards or not accessible to most users with the level of detail needed to take key policy or business decisions. Thus, we propose an evaluation framework that is cost-efficient for first capture and future updates, and is reliable at the block level. The framework complements existing work of using street view imagery combined with deep learning to automatically extract building information to assist the identification of housing characteristics. We then check its potential for scalability and higher level reliability. For that purpose, we create an index, which synthesises the highest possible level of granularity of data at the housing unit and at the household level at the block level, and assess whether the predictions made by our model could be used to approximate vulnerability conditions with a lower budget and in selected areas. Our results indicated that the predictions from the images are clearly correlated with the index.

Summary

We haven't generated a summary for this paper yet.