Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Is Lip Region-of-Interest Sufficient for Lipreading? (2205.14295v2)

Published 28 May 2022 in cs.CV and eess.AS

Abstract: Lip region-of-interest (ROI) is conventionally used for visual input in the lipreading task. Few works have adopted the entire face as visual input because lip-excluded parts of the face are usually considered to be redundant and irrelevant to visual speech recognition. However, faces contain much more detailed information than lips, such as speakers' head pose, emotion, identity etc. We argue that such information might benefit visual speech recognition if a powerful feature extractor employing the entire face is trained. In this work, we propose to adopt the entire face for lipreading with self-supervised learning. AV-HuBERT, an audio-visual multi-modal self-supervised learning framework, was adopted in our experiments. Our experimental results showed that adopting the entire face achieved 16% relative word error rate (WER) reduction on the lipreading task, compared with the baseline method using lip as visual input. Without self-supervised pretraining, the model with face input achieved a higher WER than that using lip input in the case of limited training data (30 hours), while a slightly lower WER when using large amount of training data (433 hours).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jing-Xuan Zhang (12 papers)
  2. Gen-Shun Wan (1 paper)
  3. Jia Pan (127 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.